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Abstract

In recent years more and more large companies have shifted to using more advanced techniques
in their experimentation platform. Two aspects in particular stand out: variance reduction through
techniques such as CUPED, and avoiding the peeking problem using sequential analysis. However, they
are often treated independently, rather than as parts of a larger system. We describe our experimentation
platform, which implements a combined solution to these problems: sequentially valid confidence intervals
for relative lift, adjusted for pre-experiment data using a regression-based approach. This approach is
able to handle a wide variety of metric types, empowers technical and non-technical users to make data-
driven decisions without worrying about the peeking problem, and speeds up experiments by leveraging
pre-experiment data.

1 Introduction

Due to advances in the modern data stack, collecting, processing, and analyzing data has become ever easier,
allowing companies to leverage data earlier on in their life cycle. Combined with evidence of the value of an
experimentation culture [Koning et al., 2019] we see that more and more companies are interested in running
experiments to make data-driven decisions. Eppo is an experimentation platform with the aims of bringing
state-of-the-art in-house experimentation tools, such as those built by Microsoft and Netflix, to the market
for wide adoption. In order to be successful at this goal, such a platform has to be general ; it cannot be
focused on a particular use case, but has to cover a wide variety of situations, business models, metric types,
and scales. Next, the platform should be powerful (in the statistical sense): often the amount of data we
collect is a limiting factor, especially so for smaller companies, early stage companies, and B2B companies.
Finally, the platform should be intuitive; to build an experimentation culture, we have to be able to provide
insights that do not require a graduate degree in statistics to understand. In this work, we describe how
we currently approach a core aspect of our platform, confidence intervals, which are the primary instrument
to convey lift and uncertainty of experiment results on the platform. An example of the experiment results
dashboard is shown in Figure 1.

For the reasons mentioned above, we provide sequential confidence intervals [Howard et al., 2020] on the
relative lift so that experimenters can make decisions whenever they want, without having to abide by
a series of caveats in order to avoid statistical traps (such as the peeking problem). To reduce variance
we use regression adjustments Lin [2013] using a linear model with both pre-experiment metric data and
dimensional data (features such as user persona, country etc.), While both sequential confidence intervals
and the regression adjustment method are grounded in theory, in practice these assumptions can be hard to
satisfy. Nonetheless, through simulations and A/A tests, we found that this is a powerful combination that
works well in practice. There are a number of important aspects that we do not address here due to space
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Figure 1: Dashboard showing results of a demo experiment in Eppo.

considerations, in particular: handling of outliers, non-stationarity of treatment effects (e.g. due to novelty
bias or weekly seasonality) and multiple testing corrections.

2 Experiment setting

Let us take a slightly formal approach in defining the problem precisely, as it reveals subtle structure in how
data is generated. Consider the standard setting of analyzing an experiment with two variations: treatment
and control. During the experiment, subjects, indexed by i = 1, . . . , n, are randomly assigned to treatment
(Wi = 1) or control (Wi = 0). We are interested in understanding the differences between treatment and
control on a set of metrics M , but focus on estimating the treatment effect for a single metric m. We observe
events that correspond to metric m at specific timestamps for each subject throughout the experiment. For
each subject, we can compute the metric value and subject i at time t as a function of all events (and
timestamps) for that subject up until time t. For example, suppose we track spend events, then the revenue
metric would sum spend amounts from the time of assignment up until time t. Alternatively, we can compute
a 7-day conversion metric by looking at whether there is an event within 7 days of assignment.

We are now interested in understanding the difference in means for the underlying stochastic processes for
treatment and control, with mean values µ1(t) and µ0(t). As metrics often differ in magnitude, we are
interested in creating sequential confidence intervals around the relative lift

τ(t) =
µ1(t)− µ0(t)

µ0(t)
=

µ1(t)

µ0(t)
− 1. (1)

for the duration of the experiment. In practice, the results are updated periodically, e.g. once a day.

3 Sequential confidence intervals

Classical frequentist confidence intervals provide a type I error guarantee for a particular value of t. Sequential
confidence intervals provide the much stronger guarantee of generating a sequence of confidence intervals
with a type I error guarantee across the entire sequence [Howard et al., 2020]. Our approach to generating
these confidence intervals is straightforward and flexible. First, we find estimators µ̂w(t) of µw(t) and derive
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the asymptotic distribution. For now, let’s simply use the sample averages for subjects with Wi = w.
Below, we show how we can replace these simple sample averages with more powerful estimates using
regression adjustments. In either case, we can combine the central limit theorem and delta method to find
the asymptotic normal distribution of our effect estimate

τ̂(t) =
µ̂1(t)

µ̂0(t)
− 1 →D N

(
µ1(t)− µ0(t)

µ0(t)
, σ2

τ

)
, (2)

with

στ (t) =
µ1(t)

µ0(t)

√
σ2
0(t)

µ2
0(t)

+
σ2
1(t)

µ2
1(t)

. (3)

From τ̂ it is straightforward to construct classical frequentist confidence intervals, but by default we produce
sequential confidence intervals using the Normal Mixture bound in Howard et al. [2020] as

τ̂l ± σ̂τ

√
n+ ρ

n
log

(
n+ ρ

ρα2

)
, (4)

ρ =
M

log(log(eα−2))− 2 logα
. (5)

Note that the assumptions required for sequential confidence intervals are quite strong in practice, but we
found that the above confidence intervals perform well in both simulation studies as well as A/A tests. Here,
M is a free parameter that can be used to tune for which sample size the confidence interval is relatively
tightest, and hence it should be set approximately equal to the expected sample size for the experiment. α
is the usual parameter to set the confidence level.

4 Variance reduction with regression adjustments

Many experimentation platforms have found great success in reducing variance and thus obtaining tighter
confidence intervals by leveraging additional pre-experiment data, first popularized by Microsoft’s CUPED
implementation [Deng et al., 2013, Xie and Aurisset, 2016, Tang et al.]. CUPED computes the pre-experiment
data on the metric of interest over a short window and uses that as a correction term to reduce variance.
While powerful and simple to implement at scale, the standard CUPED approach has a couple of downsides:
not all metrics have a straightforward pre-experiment equivalent; there are no benefits for experiments
without pre-experiment data (such as sign-up flow experiments); handling missing values can cause issues;
and pre-experiment data from other metrics may help reduce variance as well.

Instead, we follow the regression adjustment approach from Lin [2013], Wager [2020] to leverage for pre-
experiment data. For each outcome metric (for which we want to estimate average treatment effect), we fit a
regression on subjects in the control group, and similarly fit a regression on subjects in the treatment group.
For each model, the dependent variable is the observed metric values for each subject in the experiment,
and the independent variables are:

1. The pre-experiment metric values for the given outcome metric.

2. The pre-experiment metric values for every other metric in the experiment.

3. Assignment dimensions: Features such as country, browser, user persona, etc., which are available at
the time the subject is first assigned to an experiment group

That is, given a metric m, we fit models for control and treatment for its value at time t based on

Ym,w(t) = βwXw + ε (6)

3



with
X = [1, Xw,M , Xw,D]. (7)

Xw,M captures pre-experiment metric data across a look-back period for all metrics in M , and Xw,D contains
pre-experiment assignment data. Let pw,i be the prediction of subject i from model w, which we can use
to construct estimates µ̂w = 1

n

∑
i pw,i. We can then leverage the following convergence result [Buja et al.,

2019, Proposition 7] √
n(µ̂w − µw) →D N (0, σ2

w) (8)

with
σ2
w = E

(
(Yw − pw(X))2

)
. (9)

Note in particular that this result does not assume linearity of the population model, and furthermore
that this approach can be extended to leverage modern machine learning methods. We can now use the
estimate the mean square error based on our fitted values for control and treatment models as estimates
of the variances, σ2

w, plug them into Equation 2 and push this through the sequential confidence interval
machinery.

Conveniently, when computing the average treatment effect we can leverage the linearity of expectation:
E (Yi,1 − Yi,0) = E (Yi,1)− E (Yi,0), but this identity obviously does not hold for the relative lift: in general,
E (Yi,1/Yi,0) ̸= E (Yi,1) /E (Yi,0), In our case, we compute the latter, and one can use the Taylor expansion
around E (Yi,0) to characterize the difference exactly.

While the regression model is computationally more demanding than CUPED, it is also more flexible and
powerful. E.g. we can create indicator covariates for missing values, and leverage assignment dimensions,
especially useful for experiments with new subjects (i.e. subjects for which we have no pre-experiment data).
In practice, we add a small ridge regression penalty to be robust to multicollinearity issues. Furthermore, we
fit the ridge regressions efficiently across many metrics by leveraging the fact that the covariate matrix X the
same across all these models. This substantially speeds up computation, in particular when an experiment
has many metrics configured.

5 Conclusion

We presented how we combine sequential confidence intervals and regression adjustments to generate confi-
dence intervals. This is a powerful combination that can be leveraged across a wide variety of metric types
and empower both technical and non-technical users to make informed decisions that are rooted in statistical
rigor. The above method is currently running in production, powering results of experiments at both small
(few metrics, thousands of subjects) and large (hundreds of metrics, millions of users) scales.
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